
Confidential. © 2009-2015 Crytek GmbH. All Rights Reserved. Page 1 of 3

1.
a.

2.
a.
b.

c.
d.

3.
a.
b.
c.
d.

e.

A feature might be in either the ' ', or state. The significance of Needs validation 'Allowed' 'Disallowed'
these states are as follows:

Needs validation
The feasibility of using the feature in CRYENGINE's code base is yet to be validated
by the CRYENGINE Technical Council.

Allowed
The feature doesn't introduce 'show-blocking' issues.
The feature improves, or at least doesn't harm, code runtime and compile time
performance.
The feature improves, or at least doesn't harm, code readability or debugability.
The feature is supported by all the compilers that the CRYENGINE code base is
compiled against.

Disallowed
The feature introduces a 'show-blocking' issue.
The feature has a negative impact on runtime and compile time performance.
The feature has a negative impact on code readability and debugability.
The feature generally doesn't contribute to the overall quality and performance of the
CRYENGINE code base.
The feature is not supported by a CRYENGINE code base compiler.

Feature State Comments

Template
argument
deduction
for class
templates

Needs
validati
on

-

Declaring
non-type
template
parameter
s with
auto

Needs
validati
on

-

Folding
expressio
ns

Needs
validati
on

-

New
rules for
auto
deduction
from
braced-
init-list

Needs
validati
on

-

Constexpr
lambda

Needs
validati
on

-

Lambda
capture
this by
value

Needs
validati
on

-

Inline
variables

Needs
validati
on

-

Nested
namespa
ces

Allowed This feature is considered light weight and doesn’t negatively impact code
quality or run-time/compile-time performance. It is one of the first C++17
features adopted by compiler vendors, and has therefore been made available
even on older tool-chains such as vc140. It is more of a cosmetic feature, since
it helps improve readability in nested namespace scenarios.

Structure
d bindings

Needs
validati
on

-

Selection
statement
s with
initializer

Needs
validati
on

-

Constexpr
if

Needs
validati
on

The feature greatly simplifies compile-time branching that was only possible
through overloading or specialization / SFINAE. It improves compile time and
readability. The feature is available on all platforms and compilers (VS2017.3)

C++17 Language Features
C++17 Library Features
C++14 Language Features
C++14 Library Features

https://github.com/AnthonyCalandra/modern-cpp-features#template-argument-deduction-for-class-templates
https://github.com/AnthonyCalandra/modern-cpp-features#template-argument-deduction-for-class-templates
https://github.com/AnthonyCalandra/modern-cpp-features#template-argument-deduction-for-class-templates
https://github.com/AnthonyCalandra/modern-cpp-features#template-argument-deduction-for-class-templates
https://github.com/AnthonyCalandra/modern-cpp-features#template-argument-deduction-for-class-templates
https://github.com/AnthonyCalandra/modern-cpp-features#declaring-non-type-template-parameters-with-auto
https://github.com/AnthonyCalandra/modern-cpp-features#declaring-non-type-template-parameters-with-auto
https://github.com/AnthonyCalandra/modern-cpp-features#declaring-non-type-template-parameters-with-auto
https://github.com/AnthonyCalandra/modern-cpp-features#declaring-non-type-template-parameters-with-auto
https://github.com/AnthonyCalandra/modern-cpp-features#declaring-non-type-template-parameters-with-auto
https://github.com/AnthonyCalandra/modern-cpp-features#declaring-non-type-template-parameters-with-auto
https://github.com/AnthonyCalandra/modern-cpp-features#folding-expressions
https://github.com/AnthonyCalandra/modern-cpp-features#folding-expressions
https://github.com/AnthonyCalandra/modern-cpp-features#folding-expressions
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#new-rules-for-auto-deduction-from-braced-init-list
https://github.com/AnthonyCalandra/modern-cpp-features#constexpr-lambda
https://github.com/AnthonyCalandra/modern-cpp-features#constexpr-lambda
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-this-by-value
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-this-by-value
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-this-by-value
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-this-by-value
https://github.com/AnthonyCalandra/modern-cpp-features#inline-variables
https://github.com/AnthonyCalandra/modern-cpp-features#inline-variables
https://github.com/AnthonyCalandra/modern-cpp-features#nested-namespaces
https://github.com/AnthonyCalandra/modern-cpp-features#nested-namespaces
https://github.com/AnthonyCalandra/modern-cpp-features#nested-namespaces
https://github.com/AnthonyCalandra/modern-cpp-features#structured-bindings
https://github.com/AnthonyCalandra/modern-cpp-features#structured-bindings
https://github.com/AnthonyCalandra/modern-cpp-features#selection-statements-with-initializer
https://github.com/AnthonyCalandra/modern-cpp-features#selection-statements-with-initializer
https://github.com/AnthonyCalandra/modern-cpp-features#selection-statements-with-initializer
https://github.com/AnthonyCalandra/modern-cpp-features#selection-statements-with-initializer
https://github.com/AnthonyCalandra/modern-cpp-features#constexpr-if
https://github.com/AnthonyCalandra/modern-cpp-features#constexpr-if

Confidential. © 2009-2015 Crytek GmbH. All Rights Reserved. Page 2 of 3

Utf-8
character
literals

Needs
validati
on

-

Direct-list-
initializati
on of
enums

Needs
validati
on

-

New
standard
attributes

Needs
validati
on

The [[nodiscard]] attribute, when put in front of function return type, can prevent
discarding important return value or error code or misunderstanding the
purpose of function. A typical example is the confusion of .empty() with .clear()
in custom containers. With [[nodiscard]] the compiler issues a warning.

Terse
static_ass
ert

Needs
validati
on

The terse form of static_assert is useful when the evaluated expression
contains enough information that an additional message would be redundant.

Supported by all compilers. (VS2017.0)

Example:

static_assert(std::is_default_constructible_v<T>) is equally readable
than static_assert(std::is_default_constructible_v<T>, "Must be default
constructible")

Feature State Comments

std::variant Needs
validati
on

(Note: newly supported by
PS4 SDK 7.0)

std::optional Needs
validati
on

(Note: newly supported by
PS4 SDK 7.0)

std::any Disallo
wed

Not supported on PS4 as of
SDK 7.0 when RTTI is turned
off.

std::string_view Needs
validati
on

-

<functional>

std::invoke, std::not_fn

Needs
validati
on

-

<tuple>

std::apply, std::make_from_tuple

Needs
validati
on

-

<type_traits>

std::void_t, std::conjunction, std::disjunction, std::negation,
std::invoke_result, std::is_invocable, std::bool_constant

std::filesystem Needs
validati
on

-

std::byte Needs
validati
on

-

Splicing for maps and sets Needs
validati
on

-

Parallel algorithms Needs
validati
on

-

Feature State Comments

Binary
literals

Needs
validati
on

-

https://github.com/AnthonyCalandra/modern-cpp-features#utf-8-character-literals
https://github.com/AnthonyCalandra/modern-cpp-features#utf-8-character-literals
https://github.com/AnthonyCalandra/modern-cpp-features#utf-8-character-literals
https://github.com/AnthonyCalandra/modern-cpp-features#direct-list-initialization-of-enums
https://github.com/AnthonyCalandra/modern-cpp-features#direct-list-initialization-of-enums
https://github.com/AnthonyCalandra/modern-cpp-features#direct-list-initialization-of-enums
https://github.com/AnthonyCalandra/modern-cpp-features#direct-list-initialization-of-enums
https://github.com/AnthonyCalandra/modern-cpp-features#new-standard-attributes
https://github.com/AnthonyCalandra/modern-cpp-features#new-standard-attributes
https://github.com/AnthonyCalandra/modern-cpp-features#new-standard-attributes
https://docs.microsoft.com/en-us/cpp/cpp/static-assert?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/static-assert?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/static-assert?view=vs-2019
https://github.com/AnthonyCalandra/modern-cpp-features#stdvariant
https://github.com/AnthonyCalandra/modern-cpp-features#stdoptional
https://github.com/AnthonyCalandra/modern-cpp-features#stdany
https://github.com/AnthonyCalandra/modern-cpp-features#stdstring_view
https://en.cppreference.com/w/cpp/header/functional
https://github.com/AnthonyCalandra/modern-cpp-features#stdinvoke
https://en.cppreference.com/w/cpp/header/tuple
https://en.cppreference.com/w/cpp/header/type_traits
https://github.com/AnthonyCalandra/modern-cpp-features#stdfilesystem
https://github.com/AnthonyCalandra/modern-cpp-features#stdbyte
https://github.com/AnthonyCalandra/modern-cpp-features#splicing-for-maps-and-sets
https://github.com/AnthonyCalandra/modern-cpp-features#parallel-algorithms
https://github.com/AnthonyCalandra/modern-cpp-features#binary-literals
https://github.com/AnthonyCalandra/modern-cpp-features#binary-literals

Confidential. © 2009-2015 Crytek GmbH. All Rights Reserved. Page 3 of 3

Generic
lambda
expressions

Needs
validati
on

Taking parameters by auto type makes lambda on-par with template functions.
It is a great improvement to callbacks and generic algorithms that would be
otherwise unnecessarily verbose. It also enables designs such as generic
visitor pattern which wasn't possible without the feature.

The feature is supported by all compilers.

Lambda
capture
initializers

Needs
validati
on

-

Return
type
deduction

Needs
validati
on

-

Decltype
(auto)

Needs
validati
on

-

Relaxing
constraints
on
constexpr
functions

Needs
validati
on

The feature allows constexpr function to be written in almost identical style as
normal run-time functions, improving readability and compile time.

Supported by all compilers.

Variable
templates

Needs
validati
on

-

[[deprecat
ed]]
attribute

Needs
validati
on

-

Feature State Comments

User-
defined
literals for
standard
library
types

Needs
validati
on

-

Compile-
time
integer
sequences

Needs
validati
on

std::integer_sequence and std::index_sequence are useful template-
metaprogramming tools that help transform variadic template arguments or
constexpr array. Compilers usually implement the feature as magic intrinsics,
which speeds up the compilation compared to the manually implemented
recursive template.

Supported compilers - ?

std::
make_uni
que

Needs
validati
on

-

https://github.com/AnthonyCalandra/modern-cpp-features#generic-lambda-expressions
https://github.com/AnthonyCalandra/modern-cpp-features#generic-lambda-expressions
https://github.com/AnthonyCalandra/modern-cpp-features#generic-lambda-expressions
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-initializers
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-initializers
https://github.com/AnthonyCalandra/modern-cpp-features#lambda-capture-initializers
https://github.com/AnthonyCalandra/modern-cpp-features#return-type-deduction
https://github.com/AnthonyCalandra/modern-cpp-features#return-type-deduction
https://github.com/AnthonyCalandra/modern-cpp-features#return-type-deduction
https://github.com/AnthonyCalandra/modern-cpp-features#decltypeauto
https://github.com/AnthonyCalandra/modern-cpp-features#decltypeauto
https://github.com/AnthonyCalandra/modern-cpp-features#relaxing-constraints-on-constexpr-functions
https://github.com/AnthonyCalandra/modern-cpp-features#relaxing-constraints-on-constexpr-functions
https://github.com/AnthonyCalandra/modern-cpp-features#relaxing-constraints-on-constexpr-functions
https://github.com/AnthonyCalandra/modern-cpp-features#relaxing-constraints-on-constexpr-functions
https://github.com/AnthonyCalandra/modern-cpp-features#relaxing-constraints-on-constexpr-functions
https://github.com/AnthonyCalandra/modern-cpp-features#variable-templates
https://github.com/AnthonyCalandra/modern-cpp-features#variable-templates
https://github.com/AnthonyCalandra/modern-cpp-features#deprecated-attribute
https://github.com/AnthonyCalandra/modern-cpp-features#deprecated-attribute
https://github.com/AnthonyCalandra/modern-cpp-features#deprecated-attribute
https://github.com/AnthonyCalandra/modern-cpp-features#user-defined-literals-for-standard-library-types
https://github.com/AnthonyCalandra/modern-cpp-features#user-defined-literals-for-standard-library-types
https://github.com/AnthonyCalandra/modern-cpp-features#user-defined-literals-for-standard-library-types
https://github.com/AnthonyCalandra/modern-cpp-features#user-defined-literals-for-standard-library-types
https://github.com/AnthonyCalandra/modern-cpp-features#user-defined-literals-for-standard-library-types
https://github.com/AnthonyCalandra/modern-cpp-features#user-defined-literals-for-standard-library-types
https://github.com/AnthonyCalandra/modern-cpp-features#compile-time-integer-sequences
https://github.com/AnthonyCalandra/modern-cpp-features#compile-time-integer-sequences
https://github.com/AnthonyCalandra/modern-cpp-features#compile-time-integer-sequences
https://github.com/AnthonyCalandra/modern-cpp-features#compile-time-integer-sequences
https://github.com/AnthonyCalandra/modern-cpp-features#stdmake_unique
https://github.com/AnthonyCalandra/modern-cpp-features#stdmake_unique
https://github.com/AnthonyCalandra/modern-cpp-features#stdmake_unique

	Allowed C++ Standard Features

